Data supply chains and the built environment

Reasons you need a solid data supply chain to optimize building controls systems

BySean Turner January 26, 2022
Courtesy: Henderson Engineers

如果你正在读这篇文章,你可能已经意识到美国目前的供应链挑战。我猜你也受到了它对经济活动造成的拖累。美国的供应链之所以处于目前的状况,原因有很多,但重要的是要理解,美国的供应链,或任何供应链,本质上是一个系统网络。当系统的任何一部分出现故障或不堪重负时,就会影响到整个供应链。

When this concept of interconnectedness is scaled down to buildings, similar things can happen with building controls systems and building controls data. Without a solid data supply chain, building controls systems can become a drag on building operations and occupants.

Before we dive into how building controls data supply chains can impact a building, let’s both define a supply chain and data supply chain.

什么是供应链?

At its most basic definition, a supply chain is a series of steps and processes to get a product, service, or resource from its origin to its end user. In the case of the U.S. supply chain, it is more precisely a network of systems, and each of those systems can have their own supply chains that support the larger supply chain.

Imagine wanting to sell bamboo furniture. You’re probably thinking about the style of furniture you’d create and sell. But what if you had to grow your own bamboo, harvest it, refine/process it, and store it, all before you could shape and create your furniture? That might make the process of creating the furniture much more daunting, if not impossible. Within a supply chain, this process would be broken into small pieces that are performed by a network of independent, interconnected entities in an efficient and cost-effective manner.

What is a Data Supply Chain?

A data supply chain is the process of transferring data from its source to its end user. The end user may be a data scientist, a building’s facilities manager, or another process that consumes the data as a part of a larger data supply chain. Think of temperature sensor data being transmitted to an air handling unit controller, and that air handling unit controller data being transferred to the building automation system controller.

A data supply chain is important for many of the same reasons as a common supply chain: it builds efficiency and cost-effectiveness into our data streams. It’s also possible that it’s more important than we presume. As the world becomes more reliant on data, we inherently need to trust it more. Therefore, a reliable, high-quality data supply chain is crucial.

A data supply chain has the following key steps:

1. The Source:This refers to the origin point where each individual piece of data is created. Reliability is key at this stage. An unreliable source of data will impact every other step along the way.

2. Formatting and Preparation:At this critical stage, the data that was created by the source is transformed. The transformation involves applying a set of rules of functions to the extracted data to make it functional for the end user.

This step also includes data cleansing to help ensure that only the appropriate data will go through the process. One of the biggest challenges in this phase occurs when there are a variety of systems trying to interact and send data in varying formats, which may differ from what is needed by the end user.

此步骤中的另一个关键过程是检查数据完整性,以在其生命周期中维护数据的准确性和一致性。

Furthermore, the importance of formatting and preparing data appropriately cannot be overlooked. No matter the quality of the data extracted, if it isn’t transformed to meet the needs of the end user, it might as well be thrown out.

3. Storage:Once data has been formatted and prepared, it is passed along to a data lake or data warehouse depending on the specific needs. A data lake stores unstructured, semi-structured, and raw data. Data lakes generally do not require transformation of the data prior to storage. However, the stored data requires formatting and preparation (transformation) prior to processing and use.

On the other hand, a data warehouse stores structured, transformed data that is ready to be utilized. Prior to storage in a data warehouse, the data undergoes many of the transformation processes discussed in the formatting and preparation stages.

It’s important to consider data storage methodology as the selected method impacts where the data will need to be transformed within the data supply chain, overall data supply chain costs (data lake vs. data warehouse), and the ultimate end goal.

4. Process:In this step, a variety of processes can be applied to the stored data. Understanding which processes the data will undergo at the beginning of a project is vital as each process may have specific data structuring requirements to properly implement. For instance, this stage is where raw data stored in a data lake is transformed for use. Machine learning and analytics are both processes that rely heavily on the transformed data.

5. Delivery and Consumption:当提到数据分析、机器学习和数据可视化时,大多数人都会想到这个阶段。我们是数据的消费者,我们的决定和推断都是基于呈现给我们的东西。然而,一些数据供应链被输入到其他更复杂的数据供应链中。

Courtesy: Henderson Engineers

Courtesy: Henderson Engineers

What About Building Controls Data?

Simply stated, building controls data is data created by sensors installed throughout the built environment that provide awareness of building conditions at any given moment. For instance, a temperature sensor installed in an office provides temperature data that can be used to inform the occupant about indoor conditions as well as direct the HVAC system on whether there is a call for cooling or heating in the space.

The Importance of the Data Supply Chain in Regard to Building Controls Data

As mentioned earlier, the world is becoming more reliant on data. Building controls systems are no different as they have been transitioning from analog to digital in recent years. Nearly every building controls system is now available with digital controls, which means it creates and consumes data.

有了所有这些数据,就有很多机会好好利用它们。但如果没有高效的数据供应链,所有的数据都可能被浪费掉。这就是有效的数据供应链的重要性。它提供了一种有意构建数据的方式,将数据从传感器传递到数据湖/数据仓库,并最终传递给最终用户——就像任何其他供应链一样。

The Exciting Possibilities of a Reliable, High-Quality Data Supply Chain

With a proper data supply chain in place to move building controls data from sensors to a data lake/warehouse, it sets the stage for optimizing building system operations. Optimized building controls systems are a foundational component on the roadmap toregenerativebuildings, which are designed to have a net-positive environmental impact.

Quality data supply chains also enable reliable digital twins, which are virtual, identical representations of building systems. AsAdam Roth, our director of BIM/VDC, recently wrote about, there aredifferent levelsof digital twins.

期望的数字双级告知建筑控制数据供应链的复杂性和鲁棒性。例如,一个描述性的数字双胞胎可能不会从建筑控制数据供应链中获得大量好处,因为它本质上是一个可构建设计的静态模型。另一方面,自动数字双胞胎将严重依赖建筑控制数据供应链。了解了这一点,我们就必须更加用心地为这些类型的数字双胞胎开发数据供应链。

This originally appeared on Henderson Engineer’swebsite.Henderson Engineersis a CFE Media content partner.

Original content can be found atwww.hendersonengineers.com.


Author Bio:Sean is Director of Innovation & Research at Henderson Engineers.